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The equation of motion method is used to study the high-frequency conductivity of a single-component 
plasma in which carriers have a nonquadratic energy-momentum relation. In such a medium current is not 
conserved in electron-electron collisions, and there are important correlation corrections to the conductivity. 
The expression for the correction involves the perturbed correlation function in the plasma, and explicitly 
shows that the correction vanishes in the case of a quadratic energy-momentum relation. Evaluation of the 
correlation function is only possible if the electron-electron interaction is weak. An approximate calculation 
is made in this limit, which yields a formula for the conductivity that is correct to second order in the elec­
tron-electron interaction. 

INTRODUCTION 

RECENTLY, a number of theoretical papers1 have 
dealt with the question of correlation corrections 

to the high-frequency conductivity of a plasma. This 
work has concerned itself with multicomponent plasmas 
in which the constituent particles satisfy an energy-
momentum relation of the form E(k) = k2/2m.2 It is 
well known, of course, that in a single-component 
plasma with such an energy-momentum relation, the 
conductivity is unaffected by correlation. This result 
follows from the fact that, in such a medium, the particle 
current is proportional to the momentum, and therefore 
is conserved in particle-particle collisions. In most 
metallic and semiconducting plasmas, however, the 
energy-momentum relationship is not of the free particle 
form, and this argument is inapplicable. Hence, it is of 
considerable interest to study correlation corrections in 
a single-component plasma whose constituents do not 
obey a quadratic dispersion relation. Such an investiga­
tion is the aim of this paper. 

In previous treatments1 of the conductivity of quan­
tum-mechanical plasmas, calculations have been carried 
out with many-body perturbation theory using diagram­
matic techniques. We wish to attack the problem some­
what differently, using the equation of motion method3 

which is a simplified version of the Martin-Schwinger4 

Green's function formalism. This method, though not a 
completely general one, is entirely adequate for the 
present purpose, and has the advantage of closely 
paralleling the technique that is used in classical plasma 
problems. As in the classical case, the basic approxima­
tion is the factorization of higher order correlation 
functions into products of lower order ones. Such a 
procedure is valid when the average interaction energy 

J J . Dawson and C. Oberman, Phys. Fluids 5, 517 (1962); 
C. Oberman, A. Ron, and J. Dawson, Phys. Fluids 5, 1514 (1962); 
V. I. Perel and G. M. Eliashberg, Zh. Eksperim. i Teor. Fiz. 41, 
886 (1961) [translation: Soviet Phys.—JETP 14, 633 (1962)]; 
D. F. DuBois, V. Gilinsky, and M. G. Kivelson, Phys. Rev. 129, 
2376 (1963); A. Ron and N. Tzoar, Phys. Rev. (to be published). 

2 We set -h= 1 throughout this paper. 
3 David Pines, The Many-Body Problem (W. A. Benjamin 

Company, New York, 1961). 
4 P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959). 

of particles in the plasma is small compared to their 
kinetic energy. 

Though the basic ideas of the equation of motion 
method are quite simple, its application involves a good 
deal of algebra. The equations are lengthy, and the final 
formula for the conductivity is very complicated. To 
date, no attempt has been made to apply it to a 
physically interesting situation, but it is hoped that it 
will ultimately prove useful in studying the properties 
of real metals. 

THE TOTAL CURRENT 

In the following we are concerned with a many-body 
system described by the Hamiltonian 

#o=E[£(k)<zk*ak] 

kk';q L 

/ 4 T T 0 2 \ 

ak+q*0k'-q*[ Java* | , (1) ']• 
in which #k* and a* are the usual creation and annihila­
tion operators, for states of wave vector k, that satisfy 
the anticommutation relation 

[akVk']+=5(k-kO. (2) 

The prime on the summation in Eq. (1) indicates that 
terms with q=0 are to be omitted, since we presume 
the plasma neutralized by a uniform fixed background 
of positive charge. E(k), the single-particle energy func­
tion, is left arbitrary, though we are particularly in­
terested in the case in which it is not of the free particle 
form. Equation (1) is a single-band version of the sort 
of Hamiltonian that is commonly used to describe Bloch 
electrons. Actually, in many cases, the interband matrix 
elements that are omitted from it may be absorbed into 
a background dielectric constant, or the definition of 
the energy function. This will often be true for semi­
conductors or semimetals, and for them this Hamil­
tonian is fairly accurate. In good metals it is less correct, 
but does contain the essential features that we wish to 
investigate. 

Let us now imagine that the system described by 
Eq. (1) is perturbed by the application of a weak, 
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uniform, time-varying field whose coupling to it is 
described by the interaction 

ffi=-QJj(r).A{r,0<*V 

^ — £ [ak*akv(k)-A<r*<«+*>«]. (3) 
C k 

In this expression A is the vector potential of the 
external field, and \(k) = VkE(k) the velocity of an 
electron in state k. Quadratic terms in A are omitted 
from Eq. (3) since, to obtain the conductivity, we need 
only compute the induced current to first order in the 
field. For the system we are considering, the ith com­
ponent of the current operator is 

Jr-
k L 

where 

k — A )ak*ak 

fl<(k) = -
AE(k) 

dki 

(4) 

(5) 

Since A is assumed small this expression may be approxi­
mated as follows: 

vi(k)-
e / d2E \ 

- E I : A A 
c 3 Xdkidki / 

=Jiw+jt .(2) (6) 

If the energy-momentum relation were quadratic 
(E=k2/2m) the second term in this formula would 
take the form 

e eNAi 
: ^ E [ n ( k ) ] = , (7) 

mc k mc 

where 7z(k) = #k*#k is the number operator and N the 
total number of particles in the system. We see presently 
[Eq. (19)] that, in the case of a quadratic energy-
momentum relation, J (1) vanishes. Thus, we may im­
mediately calculate the conductivity of such a system 
from Eq. (7). The result is the familar expression (in 
which n is the particle density) for the high-frequency 
conductivity of an electron gas; 

a — ne2/imcc. (8) 

In the more general case of a nonquadrati c energy func­
tion the corresponding contribution to a arising from 
the J (2 ) term in Eq. (6) (which may now be a tensor) is 

e2 r{n{k))d2E{k)-] 

io) k L ft dkidkjJ 
(9) 

In this relation Q is the volume of the system and 
(«(k)) = tr[jD«(k)], where p is the density matrix for the 
interacting, but unperturbed, plasma. For our purposes, 

the crucial feature of this formula is the fact that it has 
exactly the same frequency dependence as the con­
ductivity [Eq. (8)] of a gas of particles with a quadratic 
energy-momentum relation. Thus, though some correla­
tion effects are contained in Eq. (9), they are not of 
great interest and we make no attempt to further 
evaluate this formula. 

The important correlation corrections to a arise from 
the expectation value, with respect to the perturbed 
density matrix, of the first term, J (1), in the current 
operator. These have a different frequency dependence 
from that of Eqs. (8) and (9) and are complex, rather 
than purely imaginary, indicating that here correlation 
introduces dissipative processes into the conductivity. 
We now turn to this aspect of the calculation, which is 
the principal problem of the paper. 

FORMULA FOR (Jp)) 

In this section the quantity we wish to evaluate is 

<J«>> = «ECv(k)<ok*ak>], (10) 
k 

which contains the expectation value of the operator 
ak*ak calculated with respect to the perturbed density 
matrix of the many-body system. If one assumes the 
density matrix expanded in powers of A one may write 

and 
P^Po+PiH 

{ak*ak)c^tr (p0ak*ak) + tr (piak*ak) 

= (ak*ak)o+(0k*ak)i. 

(ID 

(12) 

Only the second term of Eq. (12) contributes to the 
current, so one obtains the following expression for 

<J(1)>: 
<J«>) = eZCv(k) (a k *a k ) 1 ] . (13) 

k 

We use the equation of motion method—which here 
must be extended to second order in the electron-elec­
tron interaction—to evaluate (ak*ak)i. The resulting 
formalism is somewhat similar to that discussed by Suhl 
and Werthamer5 in connection with the second-order 
random-phase approximation. To begin, we consider 
the equation of motion—in the Heisenberg representa­
tion—of the number operator ak*ak. Its time derivative 
is determined, in the usual way, by the commutator 
with the Hamiltonian: 

i— (ak*ak) = [ak*akj # o + # i ] 
dt 

= E ' l ak*#k'-q*( — Wflk-q 
k';q \ <72 

• I ] « k + q V q * ( Wtfkf . (14) 

5H. Suhl and N. R. Werthamer, Phys. Rev. 122, 359 (1961). 
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Here it is important to notice that the equation does 
not explicitly contain the perturbation A. Thus, the 
occupation numbers ak*#k are not directly altered by 
the field, but only in an indirect way through its effect 
on the operators ak*ak>_q*ak'ak_q and ak4-q*ak'_q*ak'ak, 
which describe pair correlation in the plasma. By taking 
the trace of Eq. (14) with the first-order correction pi to 
the density matrix, we may now obtain an expression 
for the average that appears in Eq. (13). Since the 
perturbation is harmonic in time, all first-order expecta­
tion values vary as e~

i{<Ji+it)t. Thus, one finds 

d 
i—(ak*ak)i= (a)+ie)(ak*ak)i 
dt 

f/47re2\ 
= E ' i ( )[<ak*0k'-q*0k'ak-q}i 

k';q I \ q2 / 
— <ak+q*ak '_q*ak 'ak)i] I . (15) 

When substituted into Eq. (13), this expression yields 
the result 

<JU>> = ( - - ) E'{(—Yv(k)-v(k+q)] 
\ a>A.k';ql\ q2 / 

X (^k+q*^k'-q*^k'ak)i \ , (16) 

which may be summetrized in k and k' with the aid of 
the commutation relation, which implies that 

ak+q*ak'-q*tfk'ak = ak ' -q*ak+q*akak ' , (17) 
and 

(ak+q*ak '_q*ak 'ak)i=(ak+q*akak '_q*ak ')i 

+ (^(k+q))15(k+q-k/). (18) 

This is a very complicated equation which, through the 
Coulomb interaction, couples two- and three-particle 
operators. To make any progress in solving it one must 
somehow approximate the latter by simpler functions. 

The final form is 

\ 2a>A,k',.ql\ q2 J 

X[v(k) + v ( k O - v ( k + q ) - V ( k ' - q ) ] [ . (19) 

The second term of Eq. (18) does not contribute to this 
formula since the velocity term vanishes when k / = =k+q. 

Equation (19) is an exact expression for {J (1 )). Its 
form shows immediately that there is no correlation 
correction if E(k) = k2/2m for, under these circum­
stances, the factor [v(k)+v(k / ) — v(k+q) — v(k /—q)] 
is zero. To use it to determine the conductivity, one 
must approximately evaluate the perturbed correlation 
function (ak+q*ak '_q*ak 'ak)i. We consider this question 
in the next section. 

CALCULATION OF THE PERTURBED 
CORRELATION FUNCTION 

To evaluate the function (ak+q*akak '_q*ak ')i, it is 
convenient to consider the equation of motion of the 
operator ak+q*(0)ak(0)ak '_q*(0#k'(0 whose average 
value is the two-particle autocorrelation function. The 
advantage of this procedure is that the perturbed auto­
correlation function obeys, at least in the random-phase 
approximation, a quite simple integral equation, whereas 
that which determines (ak+q*#kak '_q*ak ')i is very in­
volved. Of course, one must always pay a price for such 
a simplification. In this case, it is that the perturbed 
autocorrelation function is given in terms of the corre­
sponding unperturbed function which must then, itself, 
be calculated. Thus, there are a number of steps in the 
analysis, but no one of them is particularly difficult. 

A straightforward computation shows that the equa­
tion of motion of the operator ak+q*(0)ak(0)ak '-q*(/)#k '(0 
is 

The usual procedure is to replace three-particle correla­
tions by suitable products of one- and two-particle 
correlation functions. Such an approximation is valid 
when the plasma is weakly coupled, in the sense that 

^[ak+q*(0)ak(0)ak^q*(Oak , (0] = flk+q*(0)ak(0)[ak,_q*(Oa^(0,H] 
dt 

= [£ (k , ) -£ (k / -q ) ] [ a k + q *(0 )a k (0 )a k ^ q *(0a k ^ (0 ] 

+ LM ak+q*(0)ak(0)ak'-q*(Ofll'-q'*W( W(00k'-q'(fl 
i';q'l \ q/2 / 

[ /47re2\ 
- E /Uk+ q*(0)ak(0)ak ,„q + q^(Oar_-q^(0 )av(t)av(t) 

- - [ v ( k O ~ v ( k / - q ) ] . A e - i ^ " ^ [ a k + q * ( 0 ) ^ k ( 0 ) ^ _ q * W ^ ( / ) ] . (20) 
c 
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the average potential energy of a pair of electrons in it 
is small compared to their kinetic energy. Henceforth 
we assume that this is the case. We also retain only 
those terms in the linearization which arise from direct 
Coulomb interactions—that is, terms from the summa­
tions in Eq. (20) that contain a factor <5(q—q'). These 
introduce a factor (47re2/#2)2 into Eq. (16) that is highly 
divergent in the limit q —•> 0. Thus, such terms can be 
large even if the electron-electron interaction is very 
weak, and they must be retained if one is to obtain 
sensible results from a plasma calculation. Keeping 
them is equivalent to summing, in the sense discussed 
by Gell-Mann and Brueckner,6 the most divergent terms 
in perturbation theory. Other terms (representing ex­
change effects) which result from the linearization of 
Eq. (20), do not lead to this difficulty in lowest order 
and can be omitted. Thus, our basic approximation is 
to replace the average of the three-particle operator by 
the following expression: 

(ak+q*(0)ak(0)ak'_q*(0^1'-q'*(0^1'(0^k'-q'(0) 

^<ak+q*(0)ak(0)ar_q*(0fli'(0> 
X ( ^ _ q * a k ^ q ) 5 ( q - q 0 . (21) 

It should be realized that this factorization represents 
a very drastic simplification of Eq. (20) which, however, 
is equivalent to that made in the well-known random 
phase approximation.3 The terms of first order in A 
that appear in Eq. (21) are then 

(ak+q*(0)^k(0)ai'_q*(/)ar(/))i(ak '_q*ak '_q)05(q~q /) 

+ <ak+q*(0)ak(0)fli^q*(Ofli'(0>o 
X(a r_ q *a k ^ q ) 1 5(q -q / ) . (22) 

We have seen earlier, however, that the operator 
ak'_q*ak'_q is only indirectly affected by the perturba­
tion. As a consequence, the second term of Eq. (22) is 
of higher order in the electron-electron interaction than 
the first, and may be omitted. 

We now multiply Eq. (20) by the density matrix, take 
its trace, and collect terms of first order in A. After 
making the approximations outlined above we obtain 
a relatively tractable equation for the perturbation of 
the two-particle autocorrelation function. I t is 

i-+E(k'-q)-E(k')~\F1(kM'; t) 
. dt J 

/47re2\ 
= « k ' - q ) - < k ' ) ] — I E LF1(k,V; tn 

\ Q2 / 1' 

- [ v ( k / ) - v ( k / ~ q ) ] . A ^ ^ + - ) ^ 0 ( k , k / ; 0 , (23) 
c 

where 

F0(k,k'; t) = <flk+q*(0)ak(0)flk^q*(0ak'(0>o, (24) 

F i fok ' ; t) = <ak+q*(0)flk(0)ak^q*(0«k'(/)>i, (25) 
and 

n(k) = (ak*ak)0. (26) 

Here F0 is the unperturbed autocorrelation function, 
and Fi its change due to the field. Equation (23) is 
simplified by removing the e~i(o}+ie)t time dependence 
through the substitution 

F i fok ' ; t) = e~i^+ic)tT(k,kf; t), (27) 

and by Fourier transformation. The transforms, 

1 r00 

r (k ,k r ; x) = — / eixtT(k,k'; t)dt, 
27T J_oo 

1 r°° 
F0(k,k'; *) = — / e**«F0(k,k'; t)dt, 

2TT J —«> 

obey a simple integral equation 

Zx+u+ie+Eik'-ql-Eik'^TikM'; x) 

/4ire2\ 
- ( — ) [ » ( k ' - q ) - » ( k ' ) ] E C W ; * ) ] 

(28) 

= — [ v ( k ' ) - v ( k ' - q ) ] 

•AF ,
0(k,k' ;*)aS'(k,k' ;*)> (29) 

which has the solution 

r (k ,k ' ;x ) = 
x+^+u+E(k'-q)-E(k') I 

/ 4 7 r e 2 \ r « ( k ' - q ) - » ( k ' ) -
x\s(k,k';x)+l — )\ 

X E = r — : 
\ q1 / L ©(x+w+ie) 

5(k,l ' ; x) 

where 

and 

i' Lx+a>+ie+E(Y-q)-E(V)J 

/ 4xe 2 \ 
3D(3)= 1+f — - J £ 0 ( z ) , 

n(l')-n(}'-q) 
£o(s) = E 

.z+E(V-q)-E(V) "J" 

(30) 

(31) 

(32) 

6 M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364 
(1957). 

£>(s) is the usual random-phase approximation3 expres­
sion for the wave vector and frequency dependent 
dielectric constant of a plasma. Equation (30) relates 
the change in the pair distribution function to the 
corresponding unperturbed function. Thus, as the final 
step in the calculation, we must evaluate F0(k,k'; x). 
This part of the problem is discussed in the next section. 
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CALCULATION OF THE UNPERTURBED mutation relations and the single-particle occupation 
CORRELATION FUNCTION probabilities, whereas the value of F o (k ,k ' ;0 at *=0 

In this section we discuss the calculation of the func- must, itself, be calculated. Fortunately, in thermal 
tion F0(k,k'; x), which determines the pair correlation equilibrium, there is a direct relation between the 
in the unperturbed plasma. For this purpose it is most Green's functions and the corresponding correlation 
convenient to consider, not the correlation function function. Such relations have been discussed at length 
itself, but the closely related Green's function defined by by Zubarev,7 and we may use his analysis to show that 
the equation (see Appendix) 

rGrik k' * x)—Ga(k k' • x) ~l 
Gr(0= -«(0<C«k'-q*(Oflk'(0,«k+q*(0)ak(0)]>, (33) F0(k,k'; x) = i\ - ^ — a , (35) 

L (e^-1) J 
where 

8(t) = l t>0 where ^—(KT)"1, K is Boltzmann's constant, and T the 
^ Q .~ZQ W4) absolute temperature. The derivation of this result 

specifically assumes that the system in question is in 
Equation (33) defines the retarded Green's function; thermal equilibrium. We assume that this is the case 
there is also a corresponding expression for the advanced (before the perturbation A is applied) of the plasmas 
Green's function, Ga(t), obtained by replacing — id(t) we consider. 
by i6(—t) in Eq. (33). The advantage of working with To calculate Gr and Ga we again use the equation of 
Green's functions, rather than the correlation function, motion method. One may easily show that Gr is deter-
is that their value at £=0 is determined by the com- mined by the equation 

dGr 
i—+[E(k/-q)-E(kO]Gr=[^(k)-n(k-q)]5(k+q-k05(/) 

dt 
\ /4:7re2\ 

-iB(t) £ ' )<[ak'-q*Wfli'-q'*(Ofli'(0«k'-q'(0,«k+q*(0)ak(0)]> 
i ' ; q ' l \ g ' 2 / 

+ie(t) E ' (^-^J<[«k'-q+q'*(0fli'-q'*(0fli'(0flk'(0,ak+q*(0)ak(0)]) . (36) 

This equation is exact, and correspondingly complicated. To solve it we make the same approximations as were 
used in deriving Eq. (23) from Eq. (20), The result is a simple integral equation for G>(k,k'; x); 

Zx+i8+E(k'-q)-E(k')2Gr(k,kf; x) 

/47re2\ fn(k-\-q) —n(k)~ 
^—j[»(k'-q)-»(k')] £ [Gr(k,l; *)>[ J«(k+q-k'), (37) 

whose solutions is 

G r(k,k'; * )= | 
lx+i8+E(k'-q)-E(k') 

[ [ w ( k + q ) - w ( k ) ] 5 ( k + q - k ' ) /47re2\ [ » ( k + q ) - » ( k ) ] [ w ( k ' - q ) ~ n ( k O ] ) 
X + ( . (38) 

[ 2T \ q2 /2w<£>(x+i8)[x+i8+E(k)-E(k+q)~]\ 

The advanced Green's function Ga is obtained from this equation by replacing 5 by —6. 
We have now calculated the two correlation functions (perturbed and unperturbed) that are needed to determine 

(J ( 1 ) ) . The final result is obtained by combining Eqs. (19), (29), (30), (31), and (38). After a good deal of algebra 
one obtains the following formula for ( J ( 1 ) ) : 

/ ie2\ r°° /47re2\2 dx ( l£o(x+o)+ie)-£0(x+id)JJi2(x+co+ie)-ii2(x+id)y A 
( j ( i ) ) = ( + — W / ( — ) 

C2i (x+a;+ie) -£ 1 (x+f5) ] [2 1 (x+co+i€) - -£ 1 (x+i6) ] - A j 
same terms with 5<-> — 8\ , (39) 

£>(x+i5)£>(x+o)+ie) J 
r D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [translation: Soviet Phys.—Uspekhi 3, 320 (I960)]. 
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where 

and £2 is the tensor 

• S i = E 
[v(l'-q)-v(l')X«(l')-«(l'-q)]) 

22=E 
V 

z+E(Y-q)-E(V) J 

[ > ( ! ' - g) - Y ( 1 Q X v ( l ' - g) - v(l ' )JW( l ' ) - » ( ! ' - q)] 

2 + £ ( l ' - q ) - £ ( l ' ) 

(40) 

(41) 

Equation (39) is a general expression for the second-
order correlation correction to the conductivity of a 
plasma with an arbitrary energy versus momentum 
relation. I t may easily be shown to reduce to the result 
of Ron and Tzoar1 in the case in which the function E(k) 
consists of several pockets below the Fermi surface, in 
each of which the carriers satisfy an energy-momentum 
relation of the form Es(k) = (k—ks)

2/2ms. The formula 
also reduces to a result previously derived by the author8 

when the frequency dependence of the screening func­
tions, £)(x+id) and 3D(x+co+ie), is ignored. 

Equation (39), in general, yields a complex value for 
(J ( 1 )) , indicating that correlation produces a dissipative 
term in the conductivity. This dissipation arises from 
processes in which a pair of electrons, that are inter­
acting with each other, absorb a photon and share its 
energy. Such a process is not possible, of course, for a 
single free electron, since it always violates the energy-
momentum conservation laws. However, when correla­
tion is appreciable, an electron that interacts with the 
field may transfer momentum to other electrons in the 
medium. As a consequence, the restrictions imposed 
by the conservation laws are greatly relaxed and it 
becomes possible for the plasma to absorb high-fre­
quency radiation. The totality of such processes—which 
at high frequencies may also result in plasmon emission 
—are responsible for the dissipative part of J (1). The 
Kramers-Kronig relations then require that there be a 
corresponding reactive correction to the current, which 
is contained in J (2) and the real part of J (1 ). 
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APPENDIX 

To prove Eq. (35) of the text we consider two different 
correlation functions; 

F0(k,k'; t) = (ak+q*(0)ak(0)ak>^*(t)ak>(0) (Al) 

and 

£o(k,k'; 0 = (flk'-q*(0flk'(0«k+q*(0)ak(0)>. (A2) 

In an equilibrium ensemble these formulas may be 

' P . A. Wolff, Phys. Rev. 116, 544 (1960). 

rewritten in the form 

Fo(k,k';*) 

^ Z - 1 tr[e-^ak + q*(0)ak(0)ak^_q*(Oak'(0] (A3) 

and 

£o(k,k'; t) 

= Z- 1 tr[6-^ak^q*(Oflk'W«k+q*(0)ak(0)], (A4) 

where H0 is the Hamiltonian defined in Eq. (1) and 
Z=tr(e~^Ho). Next, we introduce a complete set of 
eigenfunctions of H0 to evaluate the matrix elements 
that appear here. The expression for Fo(k,k'; t) that 
results is 

X c < i r * ' V | a k ' - , * a k ' | » > r ^ } , (A5) 

with the Fourier transform 

1 r°° 
F0(k)k

,',x) = ~- / eixtF*{k,kf)t)dt 
2lT J -oo 

run' 

X (n' I a k ' - q ' V I n)b(x+En.-En)}. (A6) 

In a similar way one may show that 

1 r00 

JE0(k,k'; x) = — e"«£0(k,k'; t)dt 
2w J-oo 

= Z~l T.{<r*B«{n\aV-<i*av\n') 
n,nr 

X(nf\ak+(l*ak\n)5(x+En-E^)}. (Al) 

After interchanging the indices n and nf, and making 
use of the relation between En and En> is that required 
by the delta function, one finds 

£o(k,k'; x) = Z~l L {e-^E^{n\ak+*ak\n') 
n,nf 

X(ri\ak^<*ak>\n)S(x+En,-En)}. (A8) 

Comparison of Eqs. (A6) and (A8) then shows that 

i?o(k,k'; x) - r**E0(k,k'; x). (A9) 

This is a key relation from which we may now derive 
Eq. (35) relatively easily. The retarded Green's function 
[see Eq. (33)2 m a v be written as follows in terms of 
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EQ and FQ: 

Gr(t) = -m)LEo(M,V', t)-F0(Kk'; *)] 

•~iS(t) l £ 0 ( k , k ' ; x /)-jFo(k,k /; x')~]dxf 

id(t) f <rix't(efix'-l)Fo(k,k'',ot/)dx'. (A10) 
J —00 

The Fourier transform of Gr is 

An expression for the Fourier transform of the advanced 
Green's function is obtained by changing the sign of 5 
in this equation. Thus 

(Gr-G«) = — f («<**'-l)F0(k,k';aO 
27T 7-oo 

1 
X. 

-j-i8 x—x'—i8. 

;(^*-i)F0(k,k';s), 

bi dx' 

1 /•«> ( e ^ ' - l ^ k , ^ ; ^ ) ^ 
Gr(x) = ~~ — . (All) 

2TT J_oo (x— x'+id) which is exactly Eq. (35) of the text, 

(A12) 
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Optical Properties of 15 R SiC: Luminescence of Nitrogen-Exciton 
Complexes, and Interband Absorption 

LYLE PATRICK, D. R. HAMILTON, AND W. J. CHOYKE 

Westinghouse Research Laboratories, Pittsburgh, Pennsylvania 
(Received 30 July 1963) 

Optical experiments on ISR SiC are reported, and the results are compared with those given earlier for 6H 
SiC. The absorption edge is due to indirect, exciton-producing transitions, across an exciton energy gap of 
2.986 eV at 6°K. Two distinct photoluminescence spectra are found, due to two kinds of nitrogen-exciton 
complexes. These spectra consist of series of lines, from which 18 phonon energies are obtained. Only four 
series of lines are observed in each spectrum, although there are five inequivalent nitrogen sites in 15R SiC. 
The four nitrogen donor ionization energies are found to be approximately 0.14, 0.16, 0.16, and 0.20 eV. 
These, and other binding energies, are somewhat smaller than in 6H SiC. As in the 6H SiC data, we find 
evidence of exciton hopping, of localized vibrations, of the presence of six conduction band minima, and 
of a second valence band, split off 4.8 meV by spin-orbit interaction. 

I. INTRODUCTION 

UNTIL recently, the study of SiC polytype differ­
ences has been largely limited to x-ray investi­

gations of the numerous stacking orders found in this 
material.1-3 We are now reporting results of optical 
experiments on polytype ISR SiC, and we make many 
comparisons with results of similar experiments4,5 on 
the most common SiC polytype, 6H. Since many SiC 
properties are nearly the same for all poly types, it is 
interesting to speculate on the reasons for any marked 
differences. 

Crystallographically, the SiC polytypes differ only 
in the stacking order (along the c axis) of close-packed 
atomic planes. The various polytypes can be represented 
by ordered sequences of the three letters, ABC, each 

1 A. R. Verma, Crystal Growth and Dislocations (Butterworths 
Scientific Publications Ltd., London, 1953), Chap. 7. 

2 R. S. Mitchell, Z. Krist. 109, 1 (1957). This paper contains 
many references to x-ray results. 

3 P. Krishna and A. R. Verma, Proc. Roy. Soc. (London) 
A272, 490 (1963). 

4 W. J. Choyke and Lyle Patrick, Phys. Rev. 127, 1868 (1962). 
s D. R. Hamilton, W. J. Choyke, and Lyle Patrick, Phys. Rev. 

131, 127 (1963). 

letter representing a plane of Si atoms, and another 
plane of C atoms. In this notation, rhombohedral ISR 
SiC (space group R3m) is ABCACBCABACABCB; 
hexagonal 6H SiC (space group P6%mc) is ABCACB. 
A short description of polytype structural differences 
is given in Sec. I I I . 

The energy gaps of 6H and 15R SiC differ by only 
about 1%. That the difference is so little is probably 
accidental, for the energy gap of cubic SiC is con­
siderably smaller,6 and the energy gap of the 4H 
polytype is about 10% larger (see Fig. 1). All three 
polytypes shown in Fig. 1 have structure in their ab­
sorption edges which is characteristic of indirect optical 
transitions with the creation of excitons. In this respect 
they resemble Ge and Si.7 The absorption edge of ISR 
SiC is shown in more detail in Sec. IX. 

Considerable information on donors, phonons, and 
carriers in 6H SiC has been derived from recent studies 

6 Lyle Patrick, W. J. Choyke, and D. R. Hamilton, Bull. Am. 
Phys. Soc. 8, 484 (1963). For cubic SiC, JE<& = 2.39 eV. 

7 G. G. Macfarlane, T. P. McLean, J. E. Quarrington, and V. 
Roberts, Phys. Rev. 108, 1377 (1957); 111, 1245 (1958); R. J. 
Elliott, ibid. 108, 1384 (1957). 


